

Natjecanje u programiranju robota **Leo rover**

doc. dr. sc. Tomislav Volarić

v.asist. dr. sc. Daniel Vasić

mag. ing. Zoran Civadelić, arhitekt rješenja za IT sustave

Leo Rover

- Leo Rover je platforma mobilnog robota koja se bazira na ROS operacijskom sustavu.
- Leo Rover se bazira na Raspberry Pi platformi i može podnjeti teret do 5kg.
- Modularna platforma s mogućnošću proširenja brojnim senzorima podržanih preko RPi modula.
- Ugrađena kamera od 2MP CMOS s širokokutnom lećom s kutom gledanja od 170 stupnjeva.

Robot Operating System - ROS

- ROS Robot Operating System predstavlja skup programskih dodataka koji služe a razvoj programske podrške za različite vrste robota.
- ROS pruža usluge operacijskog sustava kao što su: sloj apstrakcije nad tehničkom podrškom, upravljanje uređajem na najnižoj razini, process upravljanja porukama i obrade događaja
- Osnovni elementi ROS operacijskog sustava su:
 - Čvorovi (engl. Nodes),
 - Paketi (engl. Packages) i Stogovi (engl. Stacks).

Instalacija okruženja

- ROS operacijski sustav sastoji se od nekoliko verzija, upute za instalaciju na raznim operacijskim sustavima se nalaze ovdje -<u>http://wiki.ros.org/noetic/Inst</u> <u>allation</u> (Ubuntu 20.04 LTS)
- Prvenstveno podržava Linux operacijski sustav, a ekesperimentalno podržava Windows i MacOS operacijske sustave.
- Preporuka korištenja USB okruženja

EROS

Online okruženje za simulaciju

- Predinstalirano okruženje -<u>https://app.theconstructsim</u> < → <u>com/</u>
 - Python,
 - Gazebo,
 - Visual Studio Code,
 - Itd.
- Podrška za različite distribucije ROS okruženja.
- Besplatni kursevi za ROS platformu.
- 2GB besplatnog prostora.

- 🔍 🌲 Learn Robotics from Zero Rot 🗙 🛛 -
 - C app.theconstructsim.com/#/

Izgradnja novog projekta

- Registrirati se na sustav preko email računa.
- Prijaviti se na sustav s korisničkim podacima.
- Napraviti novi project:
 - My Rosjects,
 - Create New Rosject.

Izgradnja novog projekta

- Unesite potrebne informacije o Vašem projektu.
- Klikom na create stvara s projekt.
- Klikom na RUN otvara se radno okruženje.

KUS Noetic			-
Name			
Leo Rover			
~			
Make it private?			
Description			
SMART Campus Leo F	Rover DEMO projekt.		
Are you creating a co	ourse for the Academy?		

Pokretanje prvog ROS projekta

Instalacija Leo Rover dodatka

- Svaki dodatak potrebno je kompajlirati preko Catkin build manager-a.
- Detalji o Catkin alatu -<u>http://wiki.ros.org/catkin/conceptual_overview</u>
- Catkin kombinira Cmake makro naredbe i Python skripte za kompajliranje i pokretanje programa.
- Svi dodaci koje je potrebno kompajlirati trebaju se nalaziti u ./catkin_ws/src direktoriju.
- Catkin omogućava pronalazak paketa na različitim direktorijima operacijskog sustava I brojne druge pogodnosti.
- Dodaci za Leo Rover koje je potrebno instalirati nalaze se na GitHub repozitorijima:
 - <u>https://github.com/LeoRover/leo_common.git</u>
 - <u>https://github.com/LeoRover/leo_simulator.git</u>

Instalacija Leo Rover dodatka za simulaciju

 Instalacija dodatka se sastoji od preuzimanja Leo Simulator paketa korištenjem git naredbe i postavljanjem u src direktorij.

- catkin make naredbaucatkin_ws direktoriju vrši instalaciju leo simulator okruženja.
- source naredba dodaje izvršne datoteke paketa koji nisu sastavni dio ROS sustava kako bi bile dostupne.

Pokretanje Leo Rover simulacije

 Nakon što su paketi instalirani pokretanje okruženja se izvršava pokretanjem naredbe.

1 roslaunch leo gazebo leo gazebo.launch

 Moguće je alternativno pokrenuti paket simulacije Leo Rover-a na Marsu.

1 roslaunch leo gazebo leo marsyard.launch

Pokretanje Leo Rover-a preko Python-a campus

- Za pokretanje robota koristiti će se rospy biblioteka i geometry_msgs.
- Svi moduli u ROS-u komuniciraju preko čvorova između kojih se razmjenjuju poruke.
- Napraviti ćemo ROS čvor za slanje poruka koje će pokrenuti Leo Rovera.
- Otvoriti Visual Studio i napraviti direktorij python_ws a u tom direktoriju napraviti datoteku drive.py.

- Za pokretanje Leo Rover robota prvo je potrebno napraviti čvor koji će komunicirati s njim.
 - 1 #!/usr/bin/env python
 - 2 import rospy
 - 3 from geometry_msgs.msg import Twist

 Biblioteka rospy se koristi za stvaranje čvora a poruke Twist se koristi za definiranje linearne i kutne brzine robota.

 Potrebno je izgraditi čvor pod nazivom "voznja" i izdavača poruka koji će poslati podatke linearne I kutne brzine modulu za vožnju Leo Rover robota.

```
1 # Izgradnja ROS čvora
2 rospy.init_node("voznja")
3 # Stvaranje ROS izdavača poruka za komunikaciju s ROS modulom
4 cmd_pub = rospy.Publisher("cmd_vel", Twist, queue_size=1)
```

pr

 Izgradnja metode za vožnju robota 2 sekunde prema linearnoj i kutnoj brzini koje se prosljeđuju

```
def drive(linear, angular):
           # Inicijalizacija ROS objekta
           twist = Twist()
4
           twist.linear.x = linear
5
           twist.angular.z = angular
6
           for in range(20):
                  # ponovi 20 puta preko for petlje
                  cmd pub.publish(twist)
8
                  # objavi poruku
9
10
                  rospy.sleep(0.1)
                  # odmori 100ms 🙄
11
```


Dodavanje vlastitog svijeta

- Za dodavanje vlastitih modela potrebno je dodati .world datoteke.
- U direktorij

~/catkin_ws/src/leo_simulator/leo_ga zebo/launch napraviti datoteku leo_smart.launch

• U direktorij

~/catkin_ws/src/leo_simulator/leo_ga zebo/worlds napraviti datoteku smart.world

leo smart.launch

smart.world

1	<pre><?xml version="1.0"?></pre>
2	<sdf version="1.6"></sdf>
3	<pre><world name="smart"></world></pre>
4	<include></include>
5	<uri>model://sun</uri>
6	
7	
8	Ground plane
9	<include></include>
10	<uri>model://ground_plane</uri>
11	
12	
13	<include></include>
14	<uri>model://person_standing</uri>
15	<pose>5 1 0 0 0 0</pose>
16	
17	
18	
19	

Simulirani svijet u Gazebo okruženju CAMPUS

Spajanje na kameru

- Za pregled simulacije robota i prikaz slike s kamere potrebno je instalirati leo desktop paket.
 - 1 **cd** ~/catkin_ws/src
 - 2 git clone https://github.com/LeoRover/leo_desktop.git
 - 3 **cd** ~/catkin_ws
 - 4 catkin_make install
 - 5 **source** ~/catkin_ws/install/setup.bash
- Nakon instalacije vizualizacija simulacije pokreće se pokretanjem naredbe

Spajanje na kameru

Pristup ROS projektu

